Abnormal Asymmetry in Language Association Cortex in Autism

Martha R. Herbert, MD, PhD,1 Gordon J. Harris, PhD,2 Kristen T. Adrien, BA,1 David A. Ziegler, BS,1 Nikos Makris, MD, PhD,1 Dave N. Kennedy, PhD,1 Nicholas T. Lange, PhD,3 Chris F. Chabris, PhD,2 Anna Bakardjiev, MD,5 James Hodgson, PhD,6 Masanori Takeoka, MD,7 Helen Tager-Flusberg, PhD,4 and Verne S. Caviness, Jr., MD1

Autism is a neurodevelopmental disorder affecting cognitive, language, and social functioning. Although language and social communication abnormalities are characteristic, prior structural imaging studies have not examined language-related cortex in autistic and control subjects. Subjects included 16 boys with autism (aged 7–11 years), with nonverbal IQ greater than 80, and 15 age- and handedness-matched controls. Magnetic resonance brain images were segmented into gray and white matter; cerebral cortex was parcellated into 48 gyral-based divisions per hemisphere. Asymmetry was assessed a priori in language-related inferior lateral frontal and posterior superior temporal regions and assessed post hoc in all regions to determine specificity of asymmetry abnormalities. Boys with autism had significant asymmetry reversal in frontal language-related cortex: 27% larger on the right in autism and 17% larger on the left in controls. Only one additional region had significant asymmetry differences on post hoc analysis: posterior temporal fusiform gyrus (more left-sided in autism), whereas adjacent fusiform gyrus and temporoparietal inferior temporal gyrus both approached significance (more right-sided in autism). These inferior temporal regions are involved in visual face processing. In boys with autism, language and social/face processing–related regions displayed abnormal asymmetry. These structural abnormalities may relate to language and social disturbances observed in autism.
Several cortical language-processing areas are fairly well defined and large enough to be studied using morphometric imaging methods. We evaluated brain structure using MRI in hypothesis-driven, a priori language-linked heteromodal association cortical regions: specifically, inferior lateral prefrontal pars opercularis (related to Broca’s region) and posterior superior temporal gyrus (related to Wernicke’s area) and interconnected cortical regions functionally related to these language association centers, including inferior frontal pars triangularis, frontal operculum, angular gyrus, supramarginal gyrus, planum temporale, and parietal operculum. The cortical parcellation methodology applied in this study, by allowing the discrimination of language-related cortical regions, enables an important next step in the evolution of neuroimaging studies of autism.

The aim of this study is to assess cerebral cortex brain morphometry, particularly in cortical regions associated with language function, in a well-characterized group of children with autism. We assessed, through quantitative neuroimaging segmentation and cortical parcellation analysis, the regional cortical volume asymmetry patterns in boys with autism and compared these measures with those in normal control boys. To our knowledge, no prior structural imaging study has examined language-related cortical regions in autistic subjects.

Subjects and Methods

Subjects

Included in this study were 16 boys with autism (9.0 ± 1.2; range, 7–11 years) and 15 normal control boys (8.3 ± 2.0; range, 7–11 years). Subjects did not differ on handedness (control: one left-handed, one mixed dominant; all other subjects right-handed), and the two groups were age matched. All boys with autism had performance IQ greater than 80. The control subjects were recruited specifically to the imaging arm of the study and were eligible if they had normal school performance and developmental history without seizures or significant head injury, and if their neurological examinations were normal. The boys with autism were recruited by clinical referral or by participation in school special needs programs as part of a large National Institute of Neurological Disorders and Stroke–funded multicenter study of language and communication impairment in preschool children.10 Girls were excluded from this study because the imaged sample included only two autistic girls with IQ greater than 80. The control boys were recruited for the imaging arm of a follow-up study in the primary school years. All subjects were imaged after written consent was obtained, and none required sedation. The control boys have been included in prior imaging reports of normal brain structure. English as the primary language was required of all subjects and their families. Subjects were excluded if they had hearing or gross sensorimotor deficits, clinical evidence of progressive encephalopathy, frequent seizures, high doses of anticonvulsant drugs or psychotropic medication, the presence of potentially paramagnetic metals and overtly evident focal brain lesions, brain atrophy, or ventriculomegaly.

The subjects with autism were recruited before they entered school as part of a larger study of children with inadequate communication.10 State-of-the-art diagnostic instruments available at the time the study was conducted were used for classification, and expert clinicians confirmed all diagnoses. All candidates for the autism group were screened using the three-part Wing Autistic Disorder Interview Checklist (WADIC).10 This test involved a patient questionnaire reviewed with an investigator or trained research assistant that covered (1) impairment in social relatedness (nine questions), (2) impairment in social communication (five questions), and (3) restricted or repetitive activities (seven questions). If the child either (1) met at least one criterion from each of three sections of the WADIC, or (2) met two criteria from the first section of this interview checklist, then the child was provisionally classified as possibly autistic. Absolute criteria from the WADIC screen for inclusion in the autistic group comprised meeting three criteria in the first set, three in the second, and one in the third. All diagnoses were confirmed by a blinded child psychiatrist who performed a structured comprehensive evaluation with determination of diagnosis according to Diagnostic and Statistical Manual of Mental Disorders (DSM) III-R criteria that were current at the time of data acquisition. All subjects satisfied DSM III-R criteria for autistic disorder at the time they were diagnosed.

Image Acquisition and Analysis

MRI was performed on either General Electric 1.5T Signa (Milwaukee, WI) or Siemens 1.5T (Iselin, NJ) MRI systems. The scanner platform had changed during the study acquisition period. Although it was suboptimal that the scanner platform changed, several steps were taken to minimize any adverse impact on the study. Specifically, reliability of measurements was tested and confirmed between scanners before continuing on the new platform.34 To further ensure that the use of multiple imaging systems was not a confounding factor in this study, all statistical analyses included scanner type as a covariate.

Image acquisitions included a T1-weighted sagittal scout series, a coronal T2-weighted sequence, to rule out focal lesions, atrophy, or ventriculomegaly, and a coronal volumetric T1-weighted spoiled gradient echo-imaging sequence for the morphometric analysis. When performed on GE systems, the following parameters were used for the volumetric acquisition: pulse sequence = 3D-SPGR or 3D-CAPRY; TR = 34 to 50 milliseconds; TE = 5 to 9 milliseconds; flip angle = 45 to 50 degrees; field of view = 24 to 26 cm; slice thickness = 3.0 to 3.1 mm; number of slices = 60 contiguous; matrix = 256 × 256; and number of excitations = 1. On Siemens systems, the following parameters were used for the volumetric acquisition: pulse sequence = 3D-FLASH; TR = 40 milliseconds; TE = 10 milliseconds; flip angle = 40 degrees; field of view = 30 cm; slice thickness = 3.1 mm; number of slices = 60 contiguous; matrix = 256 × 256; number of excitations = 1.

The imaging data sets were processed on a computer workstation with custom software. Head position was nor-
malized by reslicing each volume with 3mm thickness along the coronal plane perpendicular to the anterior commissure–posterior commissure plane, without scaling the image size.

Image signal intensity gradients caused by MR field inhomogeneity were corrected before segmentation. Neuroanatomic segmentation of gray and white matter and ventricles was performed using semiautomated procedures based on intensity contour mapping and differential intensity contour algorithms previously described.

The neocortical ribbon then was parcellated into 48 primarily gyral-based parcellation units per hemisphere, according to a three-step procedure previously described. Briefly, sulcal patterns were identified and labeled on multplanar orthogonal views by a neuroanatomically trained rater, and the sulcal markers were tracked three-dimensionally as borders between cortical parcellation units. These regions then were defined and identified by a color-coding system, the voxels were summed, and recorded quantitatively to indicate the gray matter volume of each cortical parcellation unit. White matter was not included in these cortical measurements. Cortical parcellation units and the naming convention legend are presented in Table 1.

Comparisons between volumes in parcellation regions in the left (L) and right (R) hemispheres were expressed as a symmetry index. This was calculated for each structure in the left (L) and right (R), and then multiplied by 100 to provide a percentage value. Positive symmetry index values indicate that the region is larger in the left hemisphere than in the right.

Our hypothesis was that language-related association cortices of the frontal and temporal lobes would demonstrate structural abnormalities in subjects with autism. Broca’s region centers on inferior frontal lateral pars opercularis (F3o in Fig) and is also linked with adjacent frontal regions including inferior frontal lateral pars triangularis (F3t), frontoparietal operculum (FO), and insula (INS). Wernicke’s region centers on posterior superior temporal gyrus (T1p). Adjacent temporal and parietal regions also functionally linked with Wernicke’s area include angular gyrus (AG), supramarginal gyrus (SGa, SGp), planum temporale (PT), and parietal operculum (PO). These regions were selected as the frontal and temporal lobe a priori hypothesis-driven language-related regions based on prior parcellation studies of language localization.

The symmetry index values in these a priori hypothesis-driven language regions were compared between the boys with autism and the control boys using a multivariate general linear model (GLM) program (SPSS statistical software, Chicago, IL). The GLM analysis for the language regions accounts for multiple comparisons, and if the GLM model indicates significant overall differences in the Wilks λ multivariate test, then each measure within the model can be assessed for group differences without additional adjustment for multiple comparisons. To control for possible confounding effects of age and scanner, we included these variables as covariates in the model. Additional GLM analyses were run to explore the possibility that differences exist between autistic and control children in all remaining brain regions not included in the a priori analyses. Because these post hoc analyses were exploratory in nature, intended to evaluate the specificity of the findings to language related regions, these regions were assessed without concern to the significance of the overall GLM model so as not to bias the analyses toward a conclusion of greater language regional specificity.

Results
Maps of cortical asymmetry measures by parcellation unit are presented for lateral cortex in the Figure, color-coded based on asymmetry values. Medial, inferior, superior, and temporal surface and operculum views are not shown.

Table 1. Cortical Parcellation Units with Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>Angular gyrus</td>
</tr>
<tr>
<td>CALC</td>
<td>Intracalcarine cortex</td>
</tr>
<tr>
<td>CGa</td>
<td>Cingulate gyrus, anterior</td>
</tr>
<tr>
<td>CGp</td>
<td>Cingulate gyrus, posterior</td>
</tr>
<tr>
<td>CN</td>
<td>Cuneal cortex</td>
</tr>
<tr>
<td>CO</td>
<td>Central operculum</td>
</tr>
<tr>
<td>F1</td>
<td>Superior frontal gyrus</td>
</tr>
<tr>
<td>F2</td>
<td>Middle frontal 2 gyrus</td>
</tr>
<tr>
<td>F3o</td>
<td>Inferior frontal 3 gyrus, pars opercularis</td>
</tr>
<tr>
<td>F3t</td>
<td>Inferior frontal 3 gyrus, pars triangularis</td>
</tr>
<tr>
<td>FMC</td>
<td>Frontal medial cortex</td>
</tr>
<tr>
<td>FO</td>
<td>Frontal operculum</td>
</tr>
<tr>
<td>FOc</td>
<td>Frontal orbital cortex</td>
</tr>
<tr>
<td>FP</td>
<td>Frontal pole</td>
</tr>
<tr>
<td>H</td>
<td>Heschl’s gyrus</td>
</tr>
<tr>
<td>INS</td>
<td>Insula</td>
</tr>
<tr>
<td>JPL</td>
<td>Juxta paracentral lobule</td>
</tr>
<tr>
<td>LG</td>
<td>Lingual gyrus</td>
</tr>
<tr>
<td>OP</td>
<td>Occipital pole</td>
</tr>
<tr>
<td>OF</td>
<td>Occipital fusiform gyrus</td>
</tr>
<tr>
<td>OLi</td>
<td>Lateral occipital cortex, inferior</td>
</tr>
<tr>
<td>OLs</td>
<td>Lateral occipital cortex, superior</td>
</tr>
<tr>
<td>PAC</td>
<td>Paracingulate cortex</td>
</tr>
<tr>
<td>PCN</td>
<td>Precuneus</td>
</tr>
<tr>
<td>PHa</td>
<td>Parahippocampal gyrus, anterior</td>
</tr>
<tr>
<td>PHp</td>
<td>Parahippocampal gyrus, posterior</td>
</tr>
<tr>
<td>PO</td>
<td>Parietal operculum</td>
</tr>
<tr>
<td>POG</td>
<td>Postcentral gyrus</td>
</tr>
<tr>
<td>PP</td>
<td>Planum polare</td>
</tr>
<tr>
<td>PRG</td>
<td>Precentral gyrus</td>
</tr>
<tr>
<td>PT</td>
<td>Planum temporale</td>
</tr>
<tr>
<td>SC</td>
<td>Subcallosal cortex</td>
</tr>
<tr>
<td>SCLC</td>
<td>Suprancellar cortex</td>
</tr>
<tr>
<td>SGa</td>
<td>Supramarginal gyrus, anterior</td>
</tr>
<tr>
<td>SGp</td>
<td>Supramarginal gyrus, posterior</td>
</tr>
<tr>
<td>SPL</td>
<td>Superior parietal lobule</td>
</tr>
<tr>
<td>T1a</td>
<td>Superior temporal gyrus, anterior</td>
</tr>
<tr>
<td>T1p</td>
<td>Superior temporal gyrus, posterior</td>
</tr>
<tr>
<td>T2a</td>
<td>Middle temporal gyrus, anterior</td>
</tr>
<tr>
<td>T3a</td>
<td>Inferior temporal gyrus, anterior</td>
</tr>
<tr>
<td>T3p</td>
<td>Inferior temporal gyrus, posterior</td>
</tr>
<tr>
<td>TFa</td>
<td>Temporal fusiform, anterior</td>
</tr>
<tr>
<td>TFP</td>
<td>Temporal fusiform, posterior</td>
</tr>
<tr>
<td>TO2</td>
<td>Middle temporal gyrus, temporooccipital</td>
</tr>
<tr>
<td>TO3</td>
<td>Inferior temporal gyrus, temporooccipital</td>
</tr>
<tr>
<td>TOF</td>
<td>Temporooccipital fusiform gyrus</td>
</tr>
</tbody>
</table>
A Wilks \(\lambda \) multivariate test showed that significant differences were present between control and autistic boys \(F(9,19) = 2.58; p = 0.04 \) in the overall GLM model for language regions, while controlling for age and scanner. Neither covariate was significant in the model between the groups of boys: age \(F(9,19) = 1.1; p = 0.41 \); scanner \(F(9,19) = 0.39; p = 0.92 \). Therefore, only the significant post hoc tests comparing differences based on diagnostic groups are considered further (see Tables 1 and 2).

Frontal Language Asymmetry
In inferior lateral frontal language cortex (pars opercularis, F3o, associated with Broca’s region), reversed asymmetry was observed in boys with autism compared with control boys \(F(1,30) = 5.58; p = 0.02 \). This frontal language region was 27% larger on the right side in boys with autism, whereas the control boys had 17% greater volume on the left side. These differences are displayed in Table 2 and visually in the Figure.

Posterior Language Asymmetry
PT symmetry was also significantly different between control and autistic boys \(F(1,30) = 6.20; p = 0.02 \), with autistics showing a 25% leftward asymmetry and controls only a 5% leftward asymmetry, as shown in Table 1. In addition, symmetry differences between autistics and control children in the posterior supramarginal gyrus (SGp) approached significance (autistics were 39% larger on the right as opposed to control children who were only 2% larger on the right \(F(1,30) = 3.97; p = 0.056 \). Thus, in these two posterior language regions, the asymmetry was more extreme in autistic than in control boys. Reversed asymmetry also was observed in posterior superior temporal cortex (T1p in the Fig), associated with Wernicke’s area (although with reversed polarity from the frontal language region). However, these differences were much less extreme than for the frontal pars opercularis region and were not significantly different between groups (boys with autism were 4%
Analyzed Exploratory Regions Ranked to 592
Annals of Neurology Vol 52 No 5 November 2002

Table 3. Regional Symmetry Index Values for Post Hoc
Analyzed Exploratory Regions Ranked to p values <0.10
For Differences between Autistic and Control Boys

<table>
<thead>
<tr>
<th>Post Hoc Regions</th>
<th>Autistic Boys</th>
<th>Control Boys</th>
<th>Autism vs Control; F; p, df = (1, 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1p (planum temporale)</td>
<td>L: 25 ± 36</td>
<td>L: 5 ± 22</td>
<td>6.20; 0.02</td>
</tr>
<tr>
<td>SGp (posterior supramarginal gyrus)</td>
<td>R: 39 ± 67</td>
<td>R: 2 ± 42</td>
<td>3.97; 0.056</td>
</tr>
<tr>
<td>SGa (anterior supramarginal gyrus)</td>
<td>L: 33 ± 42</td>
<td>L: 17 ± 50</td>
<td>2.32; 0.14</td>
</tr>
<tr>
<td>AG (angular gyrus)</td>
<td>R: 29 ± 46</td>
<td>R: 45 ± 59</td>
<td>1.38; 0.25</td>
</tr>
<tr>
<td>PO (parietal operculum)</td>
<td>L: 17 ± 42</td>
<td>L: 2 ± 52</td>
<td>0.48; 0.49</td>
</tr>
</tbody>
</table>

For the overall general linear model analysis with age and scanner as covariates, the Wilks’ λ multivariate test indicated that significant regional differences were present between autistic and control boys (F[9, 19] = 2.58; p = 0.04). The regions included in the general linear model analysis and individual comparisons are shown.

A Greater volume on the right or left is indicated.

*SD = standard deviation; R = right; L = left; STG = superior temporal gyrus.

greater left-sided, control boys 6% greater on the right; Table 2).

Post Hoc Exploratory Analyses
Comparisons were performed between autistic and control boys on all 39 remaining cortical parcellation units to determine whether asymmetry differences were specific to language-related regions or whether they were more pervasive. Although the multivariate tests were not significant for these 39 regions, this was an exploratory analysis assessing specificity of language findings, and therefore significant regional differences within the GLM model were explored and reported here. Only one post hoc region had significant asymmetry differences between autistic and control boys: posterior temporal fusiform gyrus, which was 20% larger on the left in autistic subjects and 6% larger on the left in control boys (F[1,30] = 6.19; p = 0.02), as shown in Table 3. Trends were observed in two adja-

tent regions. Posterior (temporooccipital) inferior temporal gyrus (TO3) had 56% rightward asymmetry in autistics compared with 21% larger volume on the right in control boys (F[1,30] = 3.91; p = 0.058). The adjacent fusiform gyrus (TOF) also showed a trend toward asymmetry differences (31% rightward asymmetry in autistics, 5% rightward in control boys (F[1,30] = 3.13; p = 0.09). The only other region showing a trend (p = 0.10) between groups of boys was frontal medial cortex (leftward 7% in autistics, rightward 5% in control boys, F = 2.91; p = 0.10).

Discussion
This study is, to our knowledge, the first to identify specific abnormalities of structural brain volumes in regions associated with language functioning in autism. Although both frontal (Broca) and temporal (Wernicke) language-related heteromodal association cortex regions displayed a reversal of asymmetry in boys with autism compared with normal control boys, the frontal abnormality was substantially more extreme, and these differences were statistically significant. A prior single photon emission computed tomography (SPECT) study reported reversal of regional cerebral blood flow asymmetry in frontal language regions in autistic children compared with controls, consistent with the structural observation of this study. In addition, a prior positron emission tomography (PET) report observed reversed hemispheric dominance during verbal auditory stimulation in high-functioning autistic adults compared with control subjects. These asymmetry reversals in language-related SPECT and PET regional cerebral blood flow studies complement the frontal
language cortex structural asymmetry reversal reported in this study.

MRI studies of handedness and language dominance have indicated larger size in left hemisphere cortical language regions in right-handed, left-hemisphere language dominant normal subjects.45–48 Frontal paras opercularis (Broca) was specifically correlated with handedness in normal subjects, larger on the right in left-handed subjects and larger on the left in right-handers,26 as was observed in predominantly right-handed normal boys in this study. Although this study included one left-handed and one mixed-dominant control boy, the impact of this would be expected to diminish the asymmetry differences observed if only strongly right-handed subjects had been included as controls in our study.

Prior MRI studies of subjects with SLI have reported abnormal hemispheric asymmetries in language cortex–related measures compared with controls,27,28,31,32,49 consistent with our study findings in autism. Furthermore, the language abnormalities observed in autism share many features with those observed in SLI, and these disorders may be co-occurring or overlapping in many respects.18,50 The similarity of these neuroanatomical asymmetry abnormalities in language cortex regions in these two disorders further supports a link between autism and SLI. Parents and siblings of SLI children also displayed abnormal MRI asymmetry patterns,30 and SLI children displayed abnormal electroencephalogram asymmetries in temporal lobe electrodes in response to a semantic task. Further research may be warranted in these domains to test whether the abnormal MRI language cortex asymmetry observation in this report also is observed in family members of children with autism and whether semantic tasks produce electroencephalogram neurophysiological asymmetry abnormalities in autistic subjects.

Posterior language regions that showed asymmetry differences between autistic and control boys included planum temporale ($p = 0.02$), whereas posterior supramarginal gyrus bordered on significance ($p = 0.056$). These regions had increased asymmetry in autistic compared with control boys, with PT larger on the left and posterior supramarginal gyrus (SGp) larger on the right in both groups. A similar pattern also was reported in an MRI study in language-disordered subjects, again suggesting a link between autism and language impairment. Language-disordered subjects also had increased asymmetry compared with controls in perisylvian regions, greater on the left in temporal bank (proximity of PT) and greater on the right in parietal bank (proximity of SGp).28 The planum temporale is integral to auditory processing and receptive language, and its role and network of connections in this regard are being elucidated.52,53 Reports of planum temporale asymmetry in language-disordered groups have had inconsistent results, with studies indicating increased leftward PT asymmetry in dyslexic adults,54 rightward PT asymmetry in SLI children,27 lack of PT asymmetry in dyslexic children,55 or PT asymmetry no different from normal.32–35 Possible reasons for these inconsistencies include heterogeneity of language-disordered subjects in these studies, differences in anatomical methods,59,60 and high interindividual variability.

Impairments in language and communication are among the core features of autism.1 Even in high-functioning verbal autistic adults, deficits in social communication remain, though they may be more subtle than in much younger or more impaired individuals. Reviews of studies on the nature of the language problems in autism consistently point to specific areas of dysfunction: problems with pragmatic functioning (using language appropriately in social contexts; accommodating language to the needs of the listener); high-level semantic aspects of language, and problems with the use of prosody or intonation to convey meaning.61–64

Several PET65 and functional MRI66,67 studies, as well as our own functional MRI preliminary data,68 have been consistent in identifying a lateral portion of left inferior prefrontal cortex as a site activated by the processing of verbal stimuli at semantic (deep) compared with perceptual (shallow) levels of encoding in young, healthy individuals. This region is consistent with the frontal paras opercularis region that demonstrated asymmetry reversal in autism in this study. It has been hypothesized that this area may subserve semantic processes that are active when normal individuals encode verbal information for meaning. Our preliminary functional MRI data indicate that individuals with autism may utilize other brain regions rather than left inferior prefrontal cortex in this semantic encoding task,68 consistent with the abnormal structural asymmetry reversal demonstrated in this region in this study. Similarly, high-functioning autistic adults demonstrated reversed hemispheric dominance during verbal auditory stimulation observed with PET.44

The only non–language-related region that presented abnormal asymmetry in post hoc assessment between groups of boys was the posterior temporal fusiform gyrus. The adjacent temporoparietal portion of the inferior temporal gyrus and the adjacent temporoparietal fusiform gyrus also had trends toward asymmetry differences between autistic and control boys. The asymmetry in these three inferior temporal lobe regions was more extreme in the autistic subjects than in the control boys.

Subjects with autism display deficits in processing social context information from social attribution tasks and from faces.69,70 Several recent functional imaging studies have identified the fusiform gyrus and adjacent inferior temporoparietal region as important in pro-
cessing faces.71–73 In studies of face processing by autistic or Asperger’s subjects compared with control subjects, the fusiform gyrus displayed decreased activation and adjacent inferior temporooccipital cortex also demonstrated abnormally localized functional activation in autistic/Asperger’s subjects,71,73,74 suggesting that the observation in this study of structural asymmetry abnormalities in these regions may be associated with significant functional and behavioral consequences. Thus, this finding of structural laterality abnormalities in ventral temporooccipital cortex regions, together with prior functional imaging studies that demonstrated abnormalities in autistic subjects in these regions related to facial processing, points toward a neuroanatomical basis for the social dysfunction in autism.

Cortical asymmetry is caused by morphometrically discernable interhemispheric volume differences that derive from differences at the tissue level.75 The tissue differences are poorly understood at this time.76–78 Cortical asymmetry may be related to differences in neuron number or neuron packing density, and such differences may occur in specific subtypes of neurons or neurons more generally. Alterations in other components of cortex also may lead to volume differences detectable by MRI morphometry. Characterizing such alterations at the tissue level eventually may help to understand the basis for the lateralization of neural processing associated with some brain asymmetries, and for the functional abnormalities associated with alterations of these asymmetry patterns. Morphometric analyses such as this study can help to point toward brain regions for which more intensive study of such tissue-based differences may prove most fruitful.

One shortcoming of this report was that only male subjects were included, and so we are not able to extrapolate these findings to female autistic subjects without further study. This is particularly pertinent in the cortical language regions investigated in this study, because there may be gender differences in normal subjects in these regions as well.79,80

\begin{thebibliography}{99}
\end{thebibliography}

