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Contemporary views of human disease are based on simple correlation between
clinical syndromes and pathological analysis dating from the late 19th century.
Although this approach to disease diagnosis, prognosis, and treatment has
served the medical establishment and society well for many years, it has serious
shortcomings for the modern era of the genomic medicine that stem from its
reliance on reductionist principles of experimentation and analysis. Quantitative,
holistic systems biology applied to human disease offers a unique approach for
diagnosing established disease, defining disease predilection, and developing
individualized (personalized) treatment strategies that can take full advantage of
modern molecular pathobiology and the comprehensive data sets that are rapidly
becoming available for populations and individuals. In this way, systems patho-
biology offers the promise of redefining our approach to disease and the field of
medicine.  2011 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 3 619–627 DOI: 10.1002/wsbm.144

INTRODUCTION

The translation of new knowledge about mech-
anisms that govern human pathobiology into

effective preventive, diagnostic, and therapeutic strate-
gies is a slow and cumbersome process. A major
contributor to this translational delay is the use of the
traditional characterization and definition of human
disease, which dates to the 19th century and is largely
based on Oslerian clinicopathological correlation.1

The Oslerian formalism for human disease links clini-
cal presentation with pathological findings. As a result,
disease is defined on the basis of the principal organ
system in which symptoms and signs are manifest, and
in which gross anatomic pathology and histopathol-
ogy are correlated. This approach has held sway for
over a century, and although there has been contin-
ual refinement of the pathological markers used for
correlation (e.g., biochemical measurements, immuno-
histochemistry, flow cytometry, and, more recently,
molecular pathological analyses of expressed genes),
the general principles remain the same as when the
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approach was first proposed. Current classification
of disease phenotype (pathophenotype) is, then, the
result of inductive generalization from clinicopatho-
logical evidence predicated on the law of reductive
parsimony. This paradigm has been helpful to clini-
cians as it establishes syndromic patterns that limit the
number of potential pathophenotypes they may need
to consider. Although quite useful in an earlier era,
classifying disease in this way vastly overgeneralizes
pathophenotypes, does not usually take into con-
sideration susceptibility states or preclinical disease
manifestations, and cannot be used to individualize
disease diagnosis or therapy.

MODERN SHORTCOMINGS
OF THE OSLERIAN APPROACH
TO DISEASE

Based on this history, it is hardly surprising that
these conventional pathophenotypes are far too lim-
ited to be useful in the postgenomic era. A sim-
ple example illustrates this shortcoming. The classic
Mendelian disorder, sickle cell disease, is caused by
a single point mutation at position 6 of the β-chain
of hemoglobin, which changes hemoglobin’s oxygen
affinity and promotes polymerization under hypoxic
conditions. Notwithstanding Mendelian predictions
to the contrary, this simple biochemical phenotype and
its corresponding monogenotype do not yield a single
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pathophenotype: individuals with sickle cell disease
can present with painful crisis, osteonecrosis, acute
chest syndrome, stroke, profound anemia, or mild ane-
mia. There are many reasons for these different clinical
pathophenotypes, ranging from the presence of disease
modifying genes (e.g., hemoglobin F) to environ-
mental influences (e.g., hypoxia).2 Clearly, even the
simplest genetically determined disease is manifestly
complex in its expression, a fundamental observa-
tion that emphasizes the importance of the genomic
and environmental contexts within which disease
evolves.

Although conventional reductionist pathophe-
notyping has guided steady progress in diagnostics
and therapeutics for many years, it is fraught with
shortcomings, some of which are highlighted by this
example, that are particularly problematic for contem-
porary molecular and genomic analyses. Put another
way, in using this sorely outdated approach to defin-
ing human disease, we construct nosological silos that
focus exclusively on end-stage pathological processes
in a single organ largely driven by late-appearing,
generic end-stage mechanisms rather than true disease-
specific susceptibility determinants viewed in their
holistic, systems-based complexity.

With this background, one can rationally catalog
the limitations of traditional disease definition as
follows:

1. Disease is typically defined by late-appearing
manifestations in a dysfunctional organ system,
without regard for or knowledge of preclinical
pathophenotype or susceptibility factors that
precede overt abnormalities. Thus, the focus
is not on the specific genetic or environmental
susceptibility determinants of the disease pheno-
type, but, rather, on the late-appearing, interme-
diate pathophenotypes (generic endopathophe-
notypes, including inflammation, immunity,
fibrosis, thrombosis, hemorrhage, cell prolifer-
ation, apoptosis, and necrosis) within a given
organ system. As a result, typical therapeutic
strategies do not focus on truly unique, targeted
disease determinants, but on these same interme-
diate pathophenotypes (e.g., anti-inflammatory
or antithrombotic therapies for acute myocar-
dial infarction).

2. Conventional disease paradigms generally
neglect underlying pathobiological mechanisms
that may extend beyond the disease-defining
organ system, and do not typically consider
the molecular (deterministic) and environmental
(stochastic) factors that govern disease evolution

from susceptibility state to preclinical pathophe-
notype to overt pathophenotype.

3. Conventional definitions of disease are exces-
sively inclusive of the range of pathophenotypes
and are based on the pathophysiological char-
acterizations largely of the premolecular era.
These inclusive definitions of disease not only
obscure subtle, but potentially important, differ-
ences among individuals with common clinical
presentations, but also neglect underlying dis-
ease mechanisms that cross organ systems and
may yield more appropriate and specific thera-
peutic targets.

4. Yet another dimension to this problem stems
from the reductionist approach we use to iden-
tify disease mechanisms or therapeutic targets.
Disease is rarely (if ever) a simple consequence of
an abnormality in a single effector gene product,
but, rather, is a reflection of pathobiological pro-
cesses (deterministic and stochastic) that interact
in a complex network to yield pathophenotype,
which may be viewed as an emergent property
(i.e., discernible only by appreciating the behav-
ior of the network as a whole rather than of its
component parts in reductionist isolation) of a
pathobiological system.

These shortcomings of conventional disease definition
account for many limitations of major recent genome-
based efforts to define disease determinants (e.g., the
weak effect size of linked alleles observed in genome-
wide association studies of complex disease) and to
design rational therapies (e.g., the failure of >90% of
drug candidates3). Thus, solving this problem is not
simply an exercise in nosology, but is essential for
moving the entire health care enterprise forward to
reduce the burden of human disease and suffering.

This background highlights the clear need to
reconsider and redefine the determinants of human
disease. We begin by stating the obvious: all dis-
ease is complex, even simple Mendelian disorders.
Pathophenotype reflects the action of a determinis-
tic, defective molecular network within a stochastic
environmental context that modulates network func-
tion. Defined in this way, disease is the result of
the output of a complex modular network of -omic
and environmental nodes linked mechanistically to
yield pathophenotype.4 With this background and
rationale, we propose a redefinition of all human dis-
ease using a combination of approaches to identify
systems-based pathobiological mechanisms that ren-
der one susceptible to preclinical and overt pathophe-
notypes. This approach challenges the existing disease
paradigm directly, and is justifiable owing to the
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largely heuristic strategies that have been used to
identify disease mechanisms and treatments to date.

SYSTEMS PATHOBIOLOGY
AND NETWORK MEDICINE

A contemporary approach to human disease requires
that it be viewed from a systems perspective. In this
context, systems pathobiology is defined as the science
of integrating genetic, genomic, biochemical, cellular,
physiological, and clinical data to create a network
that can be used to model predictively disease expres-
sion (and response to therapy). In order to understand
best disease expression, one needs not only to define
the architecture or topology of the disease network (or
disease module, see below) within the context of the
universe of molecular networks in a cell or organism,
but also to explore its dynamic response to pertur-
bations. The characteristically nonlinear responses of
these complex systems underlie their emergent prop-
erties, which can only be appreciated when the system
is viewed in holistic context. From the perspective of
disease, the clinicopathological correlations of Osle-
rian medicine likely reflect these emergent properties
that otherwise often defy mechanistic elucidation. In
this way, Oslerian approaches can inform systems-
based holism as these clnicopathological correlations
often give insight into the emergent properties of a
disease network. In this way, one begins to define the
discipline of network medicine.4–7

Knowledge of two broad categories of interre-
lated networks within a cell or organism is essen-
tial for understanding the determinants of disease
expression; these are molecular networks and pheno-
typic networks. Molecular networks include protein
interaction networks,8,9 metabolic networks,10–12 and
regulatory networks, including transcription factor
networks13 and noncanonical RNA networks.14,15

Phenotypic networks include coexpression networks
in which genes are linked when they manifest sim-
ilar expression patterns in two different diseases,16

and genetic networks in which genes are linked that
together define a phenotype which is distinct from
that defined by either gene alone.17,18

Organizing Principles of Biological
Networks
Proceeding from a topological description of these
networks to an appreciation of their role in de-
fining human disease requires recognition of a few
important organizing principles derived from network
theory.19–21 In brief, any network can be viewed
as a collection of linked nodes, the distribution of

which can range from random to highly clustered.
Biological networks are not random collections of
nodes and links, but evolve as clustered collections
of genes, regulatory RNAs, proteins, or metabolites.
Biological and pathobiological networks are scale-
free; contain few highly connected nodes (hubs)22

and bottlenecks (nodes that link different highly
connected clusters to each other, gaining, as a result,
high ‘betweenness centrality’)23; manifest the small-
world effect24 and disassortativity (highly connected
nodes, or hubs, typically avoid linking to one
another)25; and contain motifs with predictable
functional consequences (feedback loops, oscillators,
etc.).26 All of the biological networks relevant to
disease manifest these properties, as well, which gives
us a starting point from which to begin to identify
those subnetworks or modules that are responsible for
a specific pathobiological process or a specific disease.

Disease Modules and Their Identification
At the molecular level, reductionist approaches to dis-
ease have assumed that abnormalities in any gene, pro-
tein, or regulatory RNA molecule could be responsible
for a disease; however, at the current time, only ∼10%
of human genes are known to be associated with a
disease.27 Armed with this knowledge, one can intu-
itively surmise that mutations in hub genes or proteins
are more likely to yield disease than those in less con-
nected, peripheral genes or proteins in the network.
However, from a systems perspective, only genes or
proteins that are peripherally located in the molecular
network are likely to account for complex disease in
adults owing to the fact that hubs are more likely to
correspond to essential genes, loss of the function of
which can lead to embryonic lethality.4,28 Although
not typically hubs, disease genes and proteins do clus-
ter in the same network neighborhood, as shown by
Goh and colleagues who reported a 10-fold increase in
the number of physical interactions observed between
gene products associated with the same disease than
would be expected by chance.28 In addition, genes
linked to diseases with similar pathophenotypes have
a higher likelihood of interacting with each other than
those not linked to the pathophenotype.29,30 Taken
together, these observations support the notion that
disease-related components of a network are likely to
comprise a subnetwork or disease module. A disease
module is defined as a group of network components
that contribute to a cellular or organismic phenotype
the disruption of which leads to a particular pathophe-
notype. Most precisely, a disease module represents
a subnetwork in the overall molecular network that
reflects a unique set of interactions, either proximate
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or remote, that contribute to an abnormal pheno-
type when one or more of its components is(are)
dysfunctional. Importantly, a specific gene, protein,
or metabolite can participate in several disease mod-
ules, indicating that disease modules themselves can
overlap within the global network, and consistent
with the clustering of disease determinants described
above.28

Disease modules can be identified either using
bioinformatics or experimental methodologies.31

Bioinformatics-based approaches comprise two broad
categories that exploit knowledge of relevant molec-
ular networks or of functional and structural sim-
ilarities among elements of the global network.
The molecular network-based approach for identi-
fying disease modules begins with constructing the
global ‘human interactome,’ a network that includes
all known (macro)molecular interactions in human
cells or tissues, regardless of cell or tissue type,
respectively. In subsequent steps, the network is
systematically reduced using genetic and biochem-
ical data to identify the functional modules (i.e.,
subnetworks) involved in the pathophenotype(s) of
interest. Bioinformatics sources for this network’s
construction include literature-curated and system-
atic high-throughput human protein–protein interac-
tion datasets,8,9,32–34 literature-curated and predicted
human protein–DNA interaction datasets,35,36 and
human metabolic pathways37,38 leading to potential
metabolic coupling,39 which, together, define the ‘host
interactome.’ The search for a disease module within
the network is then based on two complementary
hypotheses:

1. disease modules are frequently associated with
common, highly interconnected local groups of
nodes that can be identified by network cluster-
ing algorithms; and

2. the nodes of a disease module correspond to
cellular components of similar or closely related
functions associated within a specific neighbor-
hood of the network.39 (Note that the same node
can belong to multiple disease modules, and a
series of new clustering algorithms40,41 can be
used to identify systematically such overlapping
modules.)

The disease modules could contain dozens of
interconnected nodes, only some of which may be
truly relevant to the pathophenotype. In order to
identify the most relevant pathways within each mod-
ule, algorithms that incorporate flow- (or diffusion-)
based pathway prioritization are used that assign to
each path within the module a quantitative value

reflecting its topological and functional proximity to
the validated disease components. Prior work indi-
cates that the highest ranked pathways not only show
a statistically significant enrichment in disease-related
components, but also are of potential relevance to the
underlying causative mechanisms of the disease.42

Owing to the current limited knowledge of
the human interactome, the molecular network-based
approach may fail to identify genes whose interactions
with the genes involved in the disease modules have
not yet been validated. For this reason, an alternative
approach is used that can identify systematically addi-
tional potential disease genes, enhancing the proce-
dure for finding the ‘seed’ genes of the disease module.
This functional and structural similarity search-based
approach once again begins with the list of genes
known to be involved in the pathophenotype of inter-
est. In subsequent steps, genes that show sufficient
functional, structural, or contextual similarity to ‘seed’
genes are considered candidate genes that may be rele-
vant to the pathophenotype. An iterative process next
ensues in which the new candidates are functionally
characterized and validated until available evidence
fails to support further expansion of the disease mod-
ule. Accordingly, the functional and structural sim-
ilarity search-based approach proceeds according to
the following algorithm. The initial seed components
identified above are clustered into nascent modules
using publically available bioinformatics resources
as in the molecular network-based strategy, viz.,
protein–protein interactions, gene regulatory rela-
tionships (including miRNAs), and metabolic path-
ways, using high-throughput and literature-curated
data, as well as precompiled information from Gene
Ontology (GO),43 Kyoto Encyclopedia of Genes and
Genomes (KEGG),37 and literature-based annota-
tions in Genome Recognition Analysis Internet Link
(GRAIL)44; the nascent modules can also be delineated
with tissue-specific expression microarray, miRNA,45

and metabolomic data. The nascent disease module is
next expanded by deriving a set of candidate genes
with which to augment the disease module using
information in the bioinformatics resources, rely-
ing especially on GO, KEGG, and GRAIL patterns
of (tissue-specific) coexpression, and protein–protein
interaction datasets.

These bioinformatics approaches or variants
thereof have been used to identify disease mod-
ules for a wide range of disorders, including
Alzheimer disease,46 Parkinson disease,47 type 2 dia-
betes mellitus,48 asthma,49 cardiovascular diseases,50

and a variety of malignancies.51,52 What often limits
the successful mapping of a disease module, however,
is the limited coverage of available cellular maps from
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FIGURE 1 | The human systems biology universe. Human systems
comprise molecular and phenotypic networks, which are related to, but
distinct from, each other, as indicated by the separate linked ovals. The
human disease-ome represents a collection of subnetworks, the disease
modules, which are identified by one of two strategies, the molecular
network-based strategy or the functional and structural similarity-based
strategy. The assembly of disease modules into the disease-ome can be
determined by bioinformatics-based approaches—the shared gene
formalism, the shared metabolic pathway formalism, or the disease
comorbidity formalism—or by laboratory-based experimentation.

bioinformatics resources. Under these circumstances,
brute-force experimentation designed to identify the
universe of interaction partners is required and has
also been used successfully for several diseases, includ-
ing spinocerebellar ataxia,53 Huntington disease,54

and schizophrenia.55

The Disease-ome and Its Identification
A natural extension of developing a systems-based
approach to the identification of disease modules
is the growing recognition that these modules are
often interdependent (Figure 1). Systematic mapping
of overlapping disease modules and their pathopheno-
types leads to the construction of the disease-ome, or
a network of disease nodes linked to one another
by their common molecular underpinnings. There
are (at least) three different representations of the
disease-ome that have gained traction of late, each
of which reflects shared mechanisms or shared (inter-
mediate) pathophenotypes between the incorporated
diseases. The first, the shared gene formalism, rec-
ognizes that diseases which share a gene or genes
likely have a common genetic basis. This concept
has been developed by Goh et al.,28 who utilized
the Online Mendelian Inheritance in Man (OMIM)
database to build a disease network the links within
which reflect genes shared between diseases. In this

network, they found 867 of 1284 diseases with an
associated gene linked to at least one other disease,
with 516 of them belonging to a single disease cluster.
The second, the shared metabolic pathway formal-
ism, recognizes that enzymatic defects that affect the
flux of a proximate reaction in a metabolic pathway
may affect downstream fluxes in the same pathway,
leading to pathophenotypes that are known to be asso-
ciated with the downstream reactions. The corollary to
this formalism is that connections that reflect shared
metabolic pathways are more likely to be relevant
to expression of metabolic diseases than are connec-
tions based on shared genes (not in the same metabolic
pathway). Using this formalism, metabolic disease net-
work maps can be constructed in which two diseases
are linked if the enzymes associated with them cat-
alyze adjacent (sequential) reactions.56 The third, the
disease comorbidity formalism, links diseases based
on their co-occurrence in excess of the play of chance,
leading to the construction of phenotypic disease net-
work maps.57 In a recent example of this approach,
Rzhetsky et al.58 constructed a phenotypic disease
network incorporating 657 diseases from 1.5 million
Medicare patients in which two diseases are linked
if their comorbidity exceeds a predefined threshold.
Importantly, the phenotypic disease network does not
depend on molecular or genetic mechanism, nor on
environmental perturbations. Alternative approaches
to developing disease networks have been proposed
recently, including the identification of topological
modules in the human protein interaction network
and their linkage through expression data to diseases
in which they are either up- or down-regulated59;
the linkage of genetic determinants and environmen-
tal exposures to specific diseases, thereby implicating
environmental perturbations of gene function in dis-
ease pathogenesis60; and the associations of diseases
in a disease network if they have a miRNA or miRNA
cluster in common.45

OTHER APPLICATIONS OF SYSTEMS
BIOLOGY TO MEDICINE

Other areas of medicine in which systems approaches
will likely prove useful include drug development,
behavioral influences on disease propensity, and
metagenomics. Until very recently, drug development
has persisted in its reductionist quest for the Ehrlichian
‘magic bullet’ for each disease target, and as molecular
modeling and pharmacological target identification
have become more refined, the quest has become
ever more targeted. Furthermore, so-called off-target
effects, which often lead to a drug’s withdrawal from
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the market if unexpected and severe, are a reflection
of the failure to consider any pharmacological agent
in holistic context, perturbing a molecular network,
not just a single specific target. These limitations to
conventional drug development have, no doubt, con-
tributed to the limited number of annually approved
new drugs despite ever more powerful molecular
approaches to their identification. Network-based
systems approaches have begun to correct this seri-
ous limitation and will clearly redirect the industry’s
efforts; these include developing drug target networks
in order to seek commonalities of targets,61 exploring
side-effect similarities among approved drugs,62 opti-
mizing the consequences of perturbation of metabolic
networks,63 and using Bayesian approaches to iden-
tify optimal therapeutic strategies.64 The effect of
social networks on behavior and its consequences
for disease expression adds yet another dimension
to systems approaches to human disease, as demon-
strated recently for obesity.65 Lastly, the complexity
of the microbiome, its interactions with the human
host genome, and the pathobiological consequences
of its perturbation is an area rife for exploitation
using systems approaches.66–68

CONCLUSIONS

The range of possible applications of systems patho-
biology to medicine is vast, yet, is in its very early
stages. The advantages of using an holistic, network-
based approach to characterize human disease will, at
last, begin to move medicine from a field of simple
associations rooted in semi-empiric reductionism in
search of the ‘cure’ for each disease to one that recog-
nizes the power of the molecular networks upon which
human biology is based as a highly rational paradigm
by which to identify disease cures. The emergent
behavior of these networks dictates that reduction-
ist approaches will, by definition, fail to ascertain
the complexity implicit in these scale-free systems,
and will, therefore, fail to appreciate commonalities
among diseases, unique treatment approaches that
will likely require combinations of therapies, and the
many molecular consequences that environmental or
pharmacological perturbations can evoke. Although
there are clear examples of the successful application
of systems principles to medicine reviewed in this arti-
cle, the breadth of the success of this approach has
yet to be realized but will, no doubt, revolutionize the
science and practice of medicine.
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