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Autism is a developmental disorder defined behavioral-
ly by a triad of abnormalities involving language, social
interaction, and a marked lack of flexibility that may
include repetitive or ritualistic behaviors (American
Psychiatric Association, 1994); full criteria must be met
by the age of three. The behavioral features of autism
appear to be continuously distributed, and autism is part
of a spectrum that also includes more mildly affected
individuals (Dawson and others 2002).

Given that the atypical behaviors defining autism
appear specifically characterizable, there has naturally
been the expectation that we will find anatomical corre-
lates for each feature of the behavioral phenotype.
Indeed, there are findings in the limbic system and cere-
bellum (parts of the brain subserving functions that
include some impaired in autism) that have been com-
mon (Cody and others 2002), yet they are troublingly not
consistently encountered. Instead, the most replicated
finding in autism, and one that has been found in multi-
ple reliably characterized cohorts and artifact-free sam-
ples, has been that the brains are on average unusually
large. This finding has had a paradoxical impact. On one

hand, the consistency of an anatomical measure was an
encouraging sign of convergence upon unraveling the
neurobiology of this disorder. On the other hand, large
brains did not make sense in terms of neural systems
models of autism or brain-behavior correlations. How
would such a generalized phenomenon relate to a disor-
der characterized by three specific classes of atypical
behaviors? This conundrum has been sitting in the cen-
ter of the autism field almost like a zen koan, awaiting a
mental frame shift that would allow its obscure signifi-
cance to become clear.

In the past few years, a series of discoveries about the
autistic brain are appearing to converge toward a model
that integrates biological, processing, and behavioral
levels in autism. These discoveries potentially shed light
on large brains regarding both underlying mechanisms
and functional consequences. Moreover, these findings
point toward a disease model that departs from earlier
formulations of autism in having several new 
levels of potential treatment implications. The recent
findings prominently include identification of pervasive
volume scaling alterations, widespread reductions in
connectivity and perfusion, and neuroinflammation and
microgliosis that had previously been unappreciated.
Identification of these features of the autistic brain for
the most part was driven by investigation of tissue and
processing in autism and not by seeking specific corre-
lates for specific behaviors, at the level of either brain or
gene. Nevertheless, these features hold implications for
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underlying gene and gene-environment mechanisms as
well as for understanding the resulting behavioral and
medical abnormalities. Alongside these empirical find-
ings, models have emerged of more generalized deficits
or disturbances in autism, at the level of processing
(weak central coherence [Hill and Frith 2003], impaired
complex processing [Minshew and others 1997], net-
work abnormalities [McClelland 2000; Brock and others
2002; Cohen in press], disordered information process-
ing [Belmonte and others 2004]) and at the neurochem-
ical level (models of increased excitation-inhibition
ratios [Rubenstein and Merzenich 2003]), that have been
argued to underlie the specific behaviors we observe.

With these new findings and models, the phenomenon
of large brains in autism has been joined by a set of other
pervasive abnormalities. On one hand, this means there
are yet more widespread phenomena that somehow par-
adoxically have to make sense in relation to a disorder
that has been defined as a set of specific behaviors. But
on the other hand, these pervasive findings flesh out
details and suggest linkages between functional,
macroanatomical, and pathophysiological levels. They
do not displace prior regional findings, but on the other
hand, they provide a framework within which previous
observations can be viewed in a fresh light, as we will
see below.

To date, investigations of pervasive phenomena in
autism have been weighted toward gathering various
classes of data, particularly in the domain of brain size
measurement (largely MRI volumetrics and head cir-
cumference studies), that increase the level of nuance at
which we are able to describe the regionally differentiat-
ed macroscopic neuroanatomy and the temporal trajec-
tory of autistic brain enlargement, as will be described
below. The more recent developments in the field sug-
gest that further methodologies will need to be used for
characterizing the hitherto less well-studied dimensions
of brain structure and function—such as tissue charac-
terization, neuroimmunological and neurometabolic
measures, and functional connectivity—that have taken
on new relevance more recently.

Brains Are on Average Larger

Although there is a strong trend toward bigger brains in
autism, this phenomenon by no means constitutes a bio-
marker for the disorder. Frank macrocephaly is defined
as a head circumference greater than the 97th percentile,
which by definition means that it is found in 3% of the
population. Given a U.S. population of approximately
300 million, certainly the vast majority of the 9 million
individuals with macrocephaly are not autistic. What is
more interesting is that among autistic individuals, the
percentage with macrocephaly is not 3% but more in the
range of 20% (Steg and Rapoport 1975; Walker 1977;
Bailey and others 1993; Rapin 1996; Lainhart and others
1997; Stevenson and others 1997; Fombonne and others
1999; Aylward and others 2002; Deutsch and Joseph
2003; Dementieva and others 2005), with an overall
upward shift in head circumference distribution even for

those who do not meet criteria for macrocephaly (Gillber
and de Souza 2002; Deutsch and Joseph 2003;
Dementieva and others 2005). Thus, although not a bio-
marker, macrocephaly appears to be a phenomenon, or
an endophenotype, that provocatively suggests the exis-
tence of a relevant underlying pathophysiology. Yet even
here, the pathophysiology leading to macrocephaly in
autistic individuals does not seem in itself sufficient for
autism because macrocephaly is also common in their
first-degree (and unaffected) relatives (Fidler and others
2000). Macrocephaly also does not appear to be specif-
ic to autism, also being found in pervasive developmen-
tal disorder (Woodhouse and others 1996), attention
deficit hyperactivity disorder (Ghaziuddin and others
1999), and developmental language disorder (Herbert,
Ziegler, Makris, and others 2003). Nor is it specific for
any one autism phenotypic subgroup (Miles and others
2000), although individuals with Asperger syndrome
were found to have larger mean head circumferences
than those with autism (Gillberg and de Souza 2002).

Over the past decade and a half, volumetric neu-
roimaging has been contributing considerably more
detail to the characterization of increased brain volume
in autism (Table 1). Large brain volume was early
reported by Filipek and others (1992) in a sample in
which high-functioning autistic school-age children had
larger brain volumes than did lower functioning (non-
verbal IQ <80) children and controls. Piven and others
(1995) studied 20 male autistic subjects who were found
to have larger brains due to enlarged tissue and lateral
ventricle volume, with a follow-up study showing the
enlargement in males but not in females and in temporal,
parietal, and occipital but not in frontal lobes (Piven and
others 1996). Enlargement of gray and white matter in
the cerebrum and cerebellum was found in 2- to 3-year-
olds by Courchesne and others (2001), whereas cerebral
but not cerebellar enlargement was found in 3- to 4-year-
olds by Sparks and others (2002). Brain volume was
larger than controls for autistic subjects younger than 12
years (Aylward and others 2002). For school-age boys
with high-functioning autism, brain enlargement bor-
dered on significance (Herbert, Ziegler, Deutsch, and
others 2003). In a study comparing high-functioning and
low-functioning autism and Asperger syndrome with
controls in mid-childhood through adolescence, cerebral
gray matter but not white matter enlargement was found
(Lotspeich and others 2004).

Brain Growth Trajectories Are Atypical

Some of the earliest observations of increased brain size
were in postmortem brain weight measures (Bauman
and Kemper 1985). Although neuropathological investi-
gations are complicated by limited control over subject
ascertainment, comorbidities, conditions of death, and
postmortem interval and may involve confounds such as
edema that may affect brain weight, these measures are
nevertheless of interest. Postmortem studies have not

(Text continues on page 427)
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consistently reported total brain weight, but when
reported, it tended to be markedly above average, partic-
ularly in younger subjects. The early sample of Williams
and others (1980) included 4 brains all with brain
weights within 2 standard deviations of the mean for
age, but 3 of the subjects were older than 12 years at the
time of death. Kemper and Bauman (1998) reported that
of 19 brains for which weight was available, 8 of the 11
brains of subjects who were younger than 12 years were
increased compared to controls, whereas 6 of 8 brains
from individuals older than 18 years weighed less than
expected. Of the 6 brains in the Bailey and others (1998)
sample, 4 (including a 4-year-old and 3 individuals in
their 20s) were frankly above the normal range derived
from Dekaban and Sadowsky (1978), whereas the
remaining 2 (also in their 20s) were near the upper limit
of that range (Bailey and others 1998). Courchesne and
others (1999) observed that a problematic error term in
the Dekaban and Sadowsky (1978) data complicates its
use as a source of norms for these comparisons.

Larger brains in younger but not in older subjects has
also been found in brain imaging. Aylward and others
(2002) measured both head circumference and brain vol-
ume and found that both measures were larger in autistic
children younger than 12, whereas only head circumfer-
ence was larger in older autistic individuals, suggesting
an early rapid brain growth with the volume initially
achieved not being maintained through the life course.
Brain volume was enlarged in 2- to 4-year-olds but not
in teenagers studied by Courchesne and others (2001).
The failure of Lotspeich and others (2004) to replicate
many prior findings of brain enlargement may be due to
the ages of their subject pool straddling a wide range,
from 7.8 to 18.9 years, an interval that overlaps with
both younger subjects in whom brain enlargement has
been discerned and an older group in whom brain
enlargement has not been found. Of note, volumetric
studies to date have been cross-sectional; at the current
time, the longitudinal study of autism, which would gen-
erate more meaningful data, is just getting under way.

It is of particular interest to study brain growth trajec-
tories in autism from birth (Redcay and Courchesne
2005). To date, several retrospective head circumference
studies have been performed. A small minority of chil-
dren in these studies manifested macrocephaly at birth
(Mason-Brothers and others 1990; Lainhart and others
1997; Gillberg and de Souza 2002; Courchesne and oth-
ers 2003), but for the most part, across studies, autistic
children did not exceed the 97th percentile at birth
(Lainhart and others 1997; Stevenson and others 1997;
Hultman and others 2002; Courchesne and others
2003). Lainhart and others (1997) reported that head cir-
cumference increased toward macrocephaly in early to
mid-childhood, whereas Courchesne and others (2003)
found that the bulk of the unusual growth trajectory—an
increase of 2 standard deviations—was accomplished by
14 months of age, with a marked slowing of growth rate
thereafter. Dementieva and others (2005), with a much
larger sample, showed, as did Courchesne and others’

(2003) study, an abnormal brain size increase beginning
in the first 2 months of life but continuing for several
years (Fig. 1), demonstrating that many individuals who
did not become macrocephalic nevertheless manifested
this abnormal early postnatal burst of brain growth
(Dementieva and others 2005). In Courchesne and oth-
ers’ (2003) neuroimaging samples, in which the age
range of subjects cut through much of childhood, the
early rapid brain growth was followed by a much slower
rate of growth relative to controls in subsequent years of
childhood (Carper and others 2002).

The extremely desirable information about aberra-
tions in brain development during the period of most
rapid brain growth (and during the period when the brain
enlarges atypically) that could be derived from prospec-
tive brain imaging data is difficult to acquire. Given the
lack of biomarkers that would identify autistic individu-
als at birth or in early infancy, and given that the diag-
nosis is made on the basis of behaviors such as language
and socialization that are not well-defined for the first
few years, the available alternative is to study infants and
young toddlers at risk for autism due to the diagnosis of
an older sibling in the family. But serious ethical con-
straints apply to the study of undiagnosed individuals
this young, including the inappropriateness of using
sedation agents that complicated the achievement of
stillness requisite for MRI scanning; this leaves the
option of patiently waiting and then maintaining sponta-
neous sleep. The first such study reports that in two year
olds with autism there is generalized enlargement of
gray and white matter cerebral but not cerebellar vol-
umes, that may have its onset post-natally in the latter
part of the first year of life (Hazlett, Poe, Gerig and oth-
ers forthcoming). 

White Matter Contributes Disproportionately 
to Brain Volume Enlargement

Several studies found that increased brain volume in
young autistic individuals appears to be largely driven by
an increase in white matter, although in a diminishing
fashion as development progresses and overall brain
enlargement relative to controls disappears. In
Courchesne and others’ (2001) study of 2- to 16-year-
olds, white matter enlargement (18% more cerebral and
38% more cerebellar white matter) was found in 2- to 3-
year-old autistic children accompanied by cerebral cor-
tex enlargement, whereas 12-to 16-year-old autistic chil-
dren in this study had less white matter than controls did
(Courchesne and others 2001). In a comprehensive vol-
umetric profile of high-functioning autistic boys inter-
mediate in age between Courchesne and others’ younger
and older subjects, Herbert, Ziegler, Deutsch, and others
(2003) reported that white matter was 15% larger in 6-
to 12-year-old autistic boys than in age-matched con-
trols, making up less than a third of cerebral volume but
accounting for 65% of the volume increase in autism
over controls (Fig. 2); while at the same time, the cere-
bral cortex and hippocampus-amygdala were propor-
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tionately smaller than in controls and the remaining
major brain structures were absolutely larger but not
larger once overall size increase was taken into account
(Herbert and others 2003a; Fig. 3). In older autistic indi-
viduals, voxel-based methods have shown less white
matter concentration (a different measure than volume)
than in age-matched controls (Chung and others 2004;
Waiter and others 2005).

Regionalization of White Matter Volume Increase

Herbert’s group performed a further analysis to charac-
terize regional biases in this white matter volume
increase, using a method of topographical white matter
parcellation based on the neuroanatomy of white matter
tracts (Makris and others 1999; Meyer and others 1999).
The results were that the volume increase is confined to
the radiate zone, that is, the subcortical white matter pri-
marily composed of corona radiata and U-fibers but also
including the origins and terminations of projection and
sensory fibers. In this study, the deeper white matter,
including major sagittal tracts, internal capsule, and cor-
pus callosum, showed no volume increase over controls
(Herbert and others 2004). The frontal lobe white matter
showed the greatest enlargement over controls (27%),
with frontal lobe predominance also previously reported
by Carper and others (2002) and with prefrontal white
matter even more strongly affected (36% larger than
controls; Herbert and others 2004; Fig. 4). Herbert and
others (2004) reported a further regression analysis that
combined temporal and spatial considerations, address-
ing regional white matter volumes in relation to the
timetable of brain myelination in development (Yakovlev
and Lecours 1967; Kinney and others 1988),
and showed that the later a white matter region complet-
ed myelination or the longer it took to myelinate, the gre-
ater was that region’s volume increase over controls 
(Herbert and others 2004; Fig. 5). Greater volume
changes in later-myelinating white matter suggest a rela-
tionship with postnatal brain volume enlargement dis-
cussed above.

A lack of volume increase or even a relative reduction
in the midsagittal area of the corpus callosum has been a
consistent finding in autism, although regional bias has
varied regarding which part of this structure is most
affected (Egaas and others 1995; Piven and others 1997;
Manes and others 1999; Hardan and others 2000;
Herbert and others 2004). This means that the corpus
callosum is disproportionately smaller than would be
predicted given volume increases in more peripheral
white matter (Jancke and others 1997), which may con-
tribute to a reduction in interhemispheric connectivity
and thus an increased tendency to lateralize functions
(Lewis and others 2004). Indeed, a widespread increase
in cortical asymmetry, predominantly in a rightward
direction, has been documented (Chiron and others
1995; Herbert and others 2005).

Neurobehavioral Correlates

Insofar as its clinical impact has been assessed  in some
studies, large brain size has not appeared to have clinical
correlates (Lainhart and others 1997; Miles and others
2000), whereas in others, it has appeared to be more
common in higher-functioning individuals (Gillberg and
de Souza 2002; Dementieva and others 2005). Brain
enlargement is not always considered in studies of brain-
behavior relationships, although mentioned in introduc-
tions to articles, it is often left aside at the point of
model-building or hypothesis design, not finding its
way, for example, onto lists of potential brain correlates
of behavioral endophenotypes (Dawson and others
2002). There have been two reports of a relationship of
large-scale brain size measures to cognitive and diag-
nostic variables. Deutsch and Joseph (2003) found that
head circumference was not associated with language or
executive functioning and was also not related to either
verbal or nonverbal IQ taken individually. However, it
did correlate with a discrepancy between nonverbal and
verbal IQ, where the nonverbal score was higher
(Deutsch and Joseph 2003). Akshoomoff and others
(2004) found that four volumetric variables (cerebellar
white matter volume, area of anterior and of posterior
cerebellar vermis, and cerebral white matter) contributed
to two discriminant functions that separated high-
functioning autism, low-functioning autism, and con-
trols (with a mean age of 6 years) from each other.

Large brains, even if the volume increase has nonuni-
form features, represent a pervasive rather than regional-
ly localized abnormality. As such, they invite association
with more generalized processing abnormalities that
have been modeled as underlying the observed and
defining behaviors, such as weak central coherence
(Shah and Frith 1993), the idea that autism is a disorder
of late or complex information processing (Minshew and
others 1997), underconnectivity (Just and others 2004),
and the framing of autism as a neural information pro-
cessing disorder (Happe and others 2001; Belmonte and
others 2004). However, these constructs have not to date
been evaluated directly in relation to large brain size or

Fig. 1. In a sample of autistic individuals, Dementieva and oth-
ers (2005) showed a continuous increase in head circumference
percentile from birth through 3 years, with a linear regression
between mean head circumference percentile and age, by
month of age from 0 through 36 months.  (There was only one
child between 10 and 11 months and one between 13 and 14
months.) 
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to major components of this size increase such as white
matter.

Genetics, Environment, and Large Brains

At the current time, we can only speculate about the role
genes may play in autism macrocephaly, as no specific
genetic mechanisms for autism have been identified at
this time. There are a variety of genetic syndromes

whose phenotype includes macrocephaly, but although it
is conceivable that these syndromes may involve mecha-
nisms related to those underlying autism, only a few
(e.g., neurofibromatosis 1 and Sotos syndrome) have
both macrocephaly and autism as part of their phenotyp-
ic profile, whereas for the most part, genetic syndromes
that involve an increased incidence of autism are not
known to feature macrocephaly (McCaffery and
Deutsch, “Macrocephaly and the Control of Brain

Fig. 2.  In the pie chart on the left, total brain volume is divided by the percentage contribution of each major brain structure to the
overall volume.  In the pie chart on the right, the volume differences between autism and controls are broken out by contribution of
each structure. Whereas cerebral cortex comprises 52% of total brain volume in autism, it contributes only 18% to the brain volume
increase over controls. On the other hand, whereas cerebral white matter comprises 30% of total brain volume, it contributes 65% of
the volume increase over controls. The scaling of brain volumes in autism is thus nonuniform in comparison with controls. 

Fig. 3. Radiate but not deep (sagittal or bridging) white matter volume (see Fig. 4) is increased in a group of high-functioning autistic
boys and of boys with developmental language disorder (DLD). Volumes are shown as a percentage of control volume. Solid bars are
statistically significant; speckled bars are not statistically significant. Radiate white matter in all four lobes is significantly larger in
autism than controls, whereas in DLD, three lobes (sparing parietal) are similarly affected. Prefrontal white matter has an even greater
enlargement over controls than frontal lobe white matter in both groups. In the deeper sagittal and bridging, white matter volumes are
with one exception not larger than controls, and basal forebrain is smaller for both groups (Herbert and others 2004).
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Growth in Autistic Disorders,” unpublished manuscript).
Nevertheless, it is worth exploring whether some of the
more common autism-associated genetic syndromes
could have hitherto unappreciated macrocephalic fea-
tures or even comparable altered proportionality of brain
tissue compartments; the neuroanatomy of many of
these syndromes is not well characterized at the level of
what we now know about autism. At the same time,
given growing numbers of reports documenting increas-
es in the numbers of autistic individuals, with no con-
clusive explanation for these increases (Fombonne 2003;
Blaxill 2004; Newschaffer and others 2005; Palmer and
others 2005), it is prudent to include environmental as
well as genetic factors as potentially implicated in this
endophenotype.

Underlying Tissue Changes

The finding of regional differentiation in white matter
volumetrics has raised the question of what tissue
changes might be driving this phenomenon. Some infer-
ences can be made from volumes yielded by gray versus
white matter tissue classifications. The dissociation of
white matter from gray matter volumetric patterns
(Herbert, Ziegler, Deutsch, and others 2003) and trajec-
tories over time, with white matter enlargement being
initially greater and persisting longer than cerebral or
cerebellar cortical involvement, suggests that the white
matter enlargement is less likely to be a function of an
increase in neuronal number and more likely to be a con-
sequence of changes intrinsic to white matter, such as
increased myelination. Although this is only an infer-
ence, it is further supported by magnetic resonance spec-
troscopy data showing less rather than more n-acetylas-
partate (NAA) in autistic brains (Friedman and others
2003); because NAA is associated with neurons, a

reduction of this metabolite suggests less rather than
more neurons and axons.

Although diffusion tensor data have the potential to
shed some light on white matter in autism, at the current
time, there are limited data in this modality. These stud-
ies measure fractional anisotropy (FA), which relates to
the extent to which diffusion of water is directionally
constrained. Although myelin can constrain water diffu-
sion directionally, FA is not specific for myelin, and cau-
tion must be used in interpreting FA data. In 2- to 4-year-
olds, Piven’s group reported that fractional anisotropy
appears to be similar to what is found in control subjects
several years older (Cascio and others 2005), whereas in
another study involving teenagers, multiple clusters
were noted of reduced fractional anisotropy in white
matter adjacent to ventromedial prefrontal cortices, in
anterior cingulate, in temporoparietal junctions, near the
amygdala, in occipitotemporal tracts, and in the corpus
callosum (Barnea-Goraly and others 2004).

Although studies are currently underway, at the cur-
rent time, there is no neuropathological documentation
of the microscopic changes associated with white matter
enlargement, so although we can make circumstantial
inferences, we cannot yet confidently attribute it to
increases in myelination, axonal density, increased vas-
cularization, or any other particular change.

Minicolumns

Casanova and others (2002) have published several
reports of increased numbers of minicolumns with
greater cell dispersion in autism. These data were
derived from an analysis of digitized images of lamina
III in several Brodman areas. Minicolumns, defined as
vertical clusters of large neurons delimited by cell-
sparse areas on either side, were detected using a com-

Fig. 4. In the figure on the right, radiate white matter, whose enlargement is graphed in Figure 3, is shaded yellow, while sagittal and
bridging matter are shaded white. In addition, deep gray matter structures, shaded blue, are absolutely the same or slightly larger than
but proportionately no different from controls (cerebellum and brain stem also fall into this category, but they are not visible on this
slice). In the figure on the right, cerebral cortex and hippocampus-amygdala, which are shaded red, are absolutely no different from
but relatively smaller than controls (Herbert and others 2003; Herbert and others 2004).
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Fig. 5. A, Myelination has different times of onset duration and completion by brain region. This figure illustrates regions with neu-
ropathological data regarding a myelination timetable whose structures could be discerned using white matter parcellation. Weeks are
indicated postconceptionally. Figures 5B and C illustrate regression analysis to indicate the relationship of timing and duration of
myelination with the extent of volume increase over controls. The longer myelination takes (Fig. 5B, “mean maturity interval”) and the
later the presence of mature myelin is noted (Fig. 5C, “presence of mature myelin”), the greater is the volume increase (shown as mean
Z score) compared with controls. This relationship was found for both autism and developmental language disorder (DLD) subjects
(Herbert and others 2004).

A

B

C
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puterized column detection routine. Out of the nine
autistic cases, four had brain weights greater than 2 stan-
dard deviations above the mean (though one of these had
edema), but increased brain weight did not appear corre-
lated to the width of minicolumns, although the analysis
was limited as brain weights were available for only one
control. However, implications of an increased number
of narrower columns also exist for connectivity related
both to interneurons as they are affected by columnar
alterations (Casanova and others 2003) and to an altered
number and proportion of short- and long-range con-
necting fibers in the brain (Casanova 2004). Although
the number of minicolumns is determined early in gesta-
tion, there is considerable architectural resculpting in
subsequent periods of development, and nitric oxide
insufficiency has been proposed as one potential causal
mechanism for autism that could cause narrow mini-
columns postnatally (Gustafsson 2004).

Neuroinflammation

For years, it had been assumed that autism did not
involve inflammatory processes, as there was no evi-
dence of consistent inflammation or gliosis on neu-
ropathological examination (Kemper and Bauman 1998)
and MRI images were typically clinically (if not volu-
metrically) normal. Scattered neuropathological find-
ings of inflammatory changes and gliosis (Guerin and
others 1996; Bailey and others 1998) were not subject to
detailed analysis to further characterize these changes.
Recently, however, using immunocytochemistry,
cytokine protein arrays, and enzyme-linked immunosor-
bent assays, neuroinflammation has been demonstrated
in a series of autistic brains as well as in CSF from autis-
tic individuals (Vargas and others 2005; Fig. 6). This
inflammation was found in individuals ranging from 5 to
44 years of age. It appeared to reflect involvement of the
CNS innate but not adaptive immune system, as it
involved activation of microglia and astroglia but not
lymphocytes; whereas cytokine profiling showed eleva-
tions in a number of cytokines, particularly macrophage
chemoattractant protein–1 and tumor growth factor–β1.
The measures by which this inflammation was estab-
lished may be questioned due to conditions of death and
to imperfect matching of subjects with controls.
Nevertheless, the consistent trend across measures and
the prior context of multiple studies detecting peripheral
immune abnormalities in autism suggest that this is a
phenomenon deserving of reflection and further exami-
nation. The neuroinflammation appears to be of a char-
acter quite similar to that found in Alzheimer disease.
The failure to detect this abnormality on MRI in autism
is thus paralleled by the insensitivity of MRI to the
microscopic changes documented in Alzheimer disease
at the other end of the life course.

It also appears that accompanying these neuroinflam-
matory findings are signs of oxidative damage (C.
Pardo, personal communication, November 2004), signs
of which are also being discerned in studies of autistic

brain tissue by other investigators (Perry and others
2005), as well as in peripheral tissue samples (Chauhan
and others 2004; James and others 2004). Taken togeth-
er, these findings represent pathophysiology of a chron-
ic and persistent type, a different class of abnormality
than the type of fixed alteration in cellular organization
in tissue that is immunologically quiescent that has hith-
erto been assumed.

With the neuropathological documentation of neu-
roinflammation in autistic brains and CSF, the field of
interest has considerably widened regarding potential
relevant alterations in tissue composition. This finding
adds several further dimensions to the axes along which
brain changes need to be mapped in autism. The issue is
no longer simply a developmental alteration in propor-
tions of gray and white matter tissue compartments in
intrinsically healthy tissue, as has been an unstated but
implicit assumption in the bulk of volumetric discourse.
Now, additional consideration needs to be given to the
possible roles played by metabolic alterations of inflam-
mation and oxidative stress, the as yet unidentified driv-
ers of these metabolic alterations, and the extent to
which microglial and astroglial activation and inflamma-
tory cytokines and chemokines might alter both brain
structure and brain function.

At the current time, the study of brain inflammation in
autism is just beginning, and its relationship to brain vol-
ume has not yet been investigated. Because documenta-
tion of neuroinflammation was accomplished in brain
sections rather than whole brains and across a range of
ages, even had brain weights been reported, the sample
would have been insufficient to make a judgment about
the correlation of inflammation and macrocephaly. And
as noted, although we have established that white matter
contributes disproportionately (though not exclusively)
to brain enlargement, the underlying tissue changes con-
tributing to this enlargement have not yet been specified
microscopically. However, it is likely that macrocephaly
and neuroinflammation co-occur, given that some
degree of neuroinflammation was found in every autistic
tissue specimen examined and given that macrocephaly,
although not universal, is quite common. The question
thus arises as to whether these are coincidental comor-
bidities or whether there is some intrinsic relationship
between the two phenomena regarding underlying 
mechanisms.

In anticipation of studies to come, one might consider
a variety of potential ways that neuroinflammation could
contribute to overall and white matter volume increase.
The simplest is directly by an increase in cell size or by
swelling. If activated microglia and astroglia take up
more space and there is a sufficient number of them, this
could contribute to a subtle but measurable volume
increase. Such a volume increase might be enhanced by
associated increases in tissue water or other inflamma-
tion-associated tissue changes or by a compensatory
increase in vascularization to overcome possible 
inflammation-related impairment of perfusion. All such
changes would need to be fairly subtle and diffuse—
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enough to be detected in neuropathological investigation
but not pronounced enough to be detected by standard
MRI neuroimaging protocols.

A second potential route of influence of neuroinflam-
mation on brain volume is through cytokine or
chemokine alterations in signaling pathways modulating
development (Hamilton and Rome 1994; Ambrosini and
Aloisi 2004; Cartier and others 2005). Other signaling
pathways modulating development could conceivably
also be altered by whatever underlying condition might
be triggering the neuroinflammation, which is presum-
ably itself a secondary rather than a primary process.

A further possibility is that neuroinflammation and
associated increased oxidative stress could alter the
chemical milieu of the brain, leading, for example, to
increased excitotoxicity that in turn would increase cor-
tical arousal. There are some suggestions in the literature
that increased neuronal and axonal activity is associated
with increased oligodendrocyte activity (Barres and Raff
1993). This cascade of effects could conceivably lead to
an increase in myelination.

Could neuroinflammation be a type of pathophysiolo-
gy that early in development might lead to brain enlarge-
ment but at a later developmental time might contribute
to a slowing of brain growth? It could be that neuroin-
flammation leads to a set of tendencies in development
that are countervailing in relation to each other.
Although mechanisms such as those listed above could
early on increase volume, persistent inflammation and
oxidative stress could over time lead to impaired cell
health or apoptosis. This may be an explanation for the

observation of Bauman and Kemper that cytological
findings differed by age, with younger subjects having
larger cells whereas older subjects had smaller cells in
portions of the inferior olive and cerebellar nuclei
(Kemper and Bauman 1998). That these cell size
changes between younger and older subjects were found
only locally and not pervasively in these postmortem
specimens suggests that they might not be implicated in
global volumetric trends, but it could relate to regional-
ly enhanced vulnerability to this class of pathophysiolo-
gy (Boulanger and Shatz 2004).

Neuroinflammation and microgliosis are complex in
both cause and function and have adaptive as well as
maladaptive features (Wyss-Coray and Mucke 2002). In
degenerative disorders, they can arise as a response to
cellular debris related to progressive failure in a compo-
nent of cell metabolism disrupted by the genetic error
that underlies the disorder. But aside from distinct genet-
ic variants such as Rett syndrome, we are not seeing
compelling evidence of cumulative progress of an
inborn genetically based metabolic error in autism.
Although the decrease in relative volume and the
decrease in cell size in certain regions with increasing
age suggests a process that involves some losses in cell
volume and/or number over time, these changes are mild
compared with those in degenerative disorders, so that
other mechanisms need to be considered. Various class-
es of environmental factors are candidate contributors to
this picture. Oxidative stress, brain inflammation, and
microgliosis have been much documented in association
with toxic exposures including various heavy metals,

Fig. 6. Neuroinflammation in autism. A, Microglial
activation in cerebellar folia. B, Marked Purkinje
cell layer and granular cell layer neuronal loss. C,
Activated microglia in the granular cell layer. D,
Perivascular macrophages and microglia  (Vargas
and others 2005).
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pesticides, and air pollution (Kim and others 2002;
Zurich and others 2002; Campbell 2004; Ling and oth-
ers 2004; Shanker and others 2004; Filipov and others
2005). The burgeoning research domain of low-dose
persistent toxic exposures may well prove relevant here
(Welshons and others 2003). A number of investigators
are studying how autism and other developmental disor-
ders could also be mediated by immune or infectious
factors, either chronic subclinical infection or the seque-
lae of infection in the past (Hornig and Lipkin 2001;
Patterson 2002; Dalton and others 2003; Shi and others
2003). For example, a mouse model of in utero influen-
za viral infection is associated with the postnatal devel-
opment of macrocephaly, although the longer-term brain
size trajectory is not documented in this study
(Fatemi and others 2002). In these settings, genetics
might play a role in modulating the threshold for vulner-
ability (Pletnikov and others 2002; Hornig and others
2004). Volumetric changes from such factors might
involve a combination of local and scaling alterations
(Herbert and Ziegler 2005). Further research is needed
here.

Energy Metabolism and Perfusion 
Abnormalities in a New Light?

In the setting of this new class of tissue data in autism, it
may be worth revisiting earlier findings regarding abnor-
mal energy metabolism and perfusion in autism. The
early 31P-MRI spectroscopy finding of Minshew and
others (1993) showing evidence suggesting increased
membrane degradation and decreased high-energy phos-
phate compounds in dorsolateral prefrontal cortex, as
well as the increase in lactate found by Chugani and oth-
ers (1999), may be related in some way to the patho-
physiological abnormalities or underlying triggers also
associated with neuroinflammation and oxidative stress,
as may be the increased choline/creatine ratio found by
Sokol and others (2002), which may be associated with
membrane degeneration or increased cellular prolifera-
tion. The many reports of brain hypoperfusion, reviewed
elsewhere but too numerous to enumerate here
(Starkstein and others 2000), could conceivably also rest
on an underlying inflammatory pathophysiology, such as
the perivascular microgliosis documented by Vargas and
others (2005) or conceivably by disturbed energy metab-
olism. Interestingly, although almost all studies reported
hypoperfusion and none reported hyperperfusion, these
articles focused only on correlating the localization of
hypoperfusion with neuropsychological deficits but not
on disease mechanisms; now, emerging questions 
bring to the fore the issue of underlying tissue 
pathophysiology.

Functional Effects: Reduced Brain 
Integration or Connectivity

One possible effect of brain enlargement might be a per-
vasive decrement in brain integration. The phenomenon
of large brains had not yet been identified in autism

when the pervasive finding of reduced covariance of
brain regions with each other was reported; this was in
fact one of the earliest neuroimaging findings in autism.
An early positron emission tomographic study by
Horwitz and others (1988) showed reduced correlations
of resting cerebral metabolic rates among regions in
autistic brains. Although only 4 of 31 regional cerebral
metabolic rates for glucose differed between groups,
70% of the 861 possible correlations had lower values in
the group with autism; moreover, there were significant-
ly fewer robust correlations in the group with autism
than in the control group (Horwitz and others 1988).
Following Horwitz, Starkstein and others (2000), in a
single-photon emission computed tomography study
demonstrating low perfusion in mentally retarded autis-
tic subjects, calculated a correlation matrix with 42 cor-
relations and found that the control group had 26 of 42
correlations (62%) above this r value, as compared to
only 8 of 42 correlations (19%) for the autistic group.

This approach has recently been expanded from rest-
ing brain activity to studies of functional brain activa-
tion. Two recent functional MRI studies, one of sentence
comprehension (Just and others 2004) and one of work-
ing memory (Koshino and others 2005), showed a
reduced degree of synchronization of the time series of
functional activation between the various participating
cortical areas. In the first of these articles, Just and oth-
ers (2004) reported consistently lower functional con-
nectivity in autism as compared with controls, with this
measure tracking parallel in autism to controls but at a
lower level (Fig. 7). Just and others placed this phenom-
enon in the framework of “underconnectivity theory,”
which is a formulation of processing abnormalities in
autism, such as earlier “weak central coherence” or
“impaired complex processing” models, but one whose
formulation more clearly links brain function with
behavioral function. This linkage strongly suggests a
connection to underlying pervasive brain structural, per-
fusion, or chemical alterations, which calls for further
exploration.

Although Just and others’ (2004) experimental design
and formulation were novel, when one reads between the
lines of many functional neuroimaging studies in autism,
one sees that although the attempt to illuminate the
specificity of neural systems’ impairment underlying the
features of autism has yielded equivocal results (e.g.,
inconsistent results regarding ventral temporal activation
in relation to face processing, e.g., Schultz and others
2000; Pierce and others 2001; Hadjikhani and others
2004; Dalton and others 2005), the data themselves sug-
gest atypically distributed activations and reduced
covariation or abnormal interregional coordination
(Belmonte and Yurgelun-Todd 2003; Herbert 2004).
Perfusion altered consistently in the direction of reduc-
tion could be a tissue-level facet of the same overall phe-
nomenon. The frameshift of seeing coordination proper-
ties as figure rather than background to specific neural
systems functioning makes it possible to bring these
commonalities to light.
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Connectivity and Systems Vulnerability

At this early stage in the development of the research
pursuit of pervasive abnormalities in autism, it becomes
helpful to turn to modeling for guidance in hypothesis
formation. A common thread among the pervasive
deficit-oriented models already cited (e.g., weak central
coherence [Shah and Frith 1993], impaired complex pro-
cessing [Minshew and others 1997], underconnectivity
[Just and others 2004], disordered neural information
processing [Belmonte and others 2004], and neural net-
work abnormalities [McClelland 2000; Cohen in press] )
is a systems approach to the analysis of brain function-
ing. The idea that a pervasive impairment in connectivi-
ty or brain integration could underlie the autism behav-
ioral phenotype is based on the idea that altered systems
properties can produce specific and not just pervasive
changes in features. In this model, the behaviors that
define the autism phenotype are not independently
aggregated components but rather interrelated features
of altered systems output that emerge as a consequence
of these processing and connectivity problems. From
this point of view, the domains of functioning most dra-
matically affected will be those that are most dependent
on highly coordinated associational processing (Fig. 8).
Nuanced and pragmatically subtle language and social
interaction, as well as the capacity for behavioral flexi-
bility, which are the domains hit hardest in autism and
whose impairment has constituted the definition of the
disorder, will certainly suffer more strikingly. This
impairment of integration has been formulated or mod-
eled as a systems issue by a number of investigators.
Cohen (in press) has proposed a neural network model in
which either too many or too few neuronal connections,

as documented in the neuropathological literature, would
lead to overemphasis on specific details but an inferior
capacity for generalization. Brock and others (2002)
proposed that a reduction in the integration of special-
ized local neural networks in the brain caused by a
deficit in temporal binding would lead to abnormal pro-
cessing consistent with “weak central coherence.”
McClelland (2000) has proposed that hyperspecificity in
autism derives from abnormalities in neural nets. These
formulations bear substantial resemblance to lines of
thought emerging in other disorders such as schizophre-
nia and Alzheimer disease and in cognitive neuroscience
more generally, in which the notion is being explored
that the manifestations of neurobehavioral disorders may
derive from impaired cortical coordination dynamics
(Bressler and Kelso 2001).

Implications of a Systems Formulation

This systems formulation of the cognitive neuroscience
of autism has a number of implications. First, in addition
to functions most highly vulnerable to reduced brain
integration, many other functions will also suffer decre-
ments, if in more subtle ways. The research program of
Minshew, Just, and colleagues, pursuing this perspec-
tive, includes investigation of multiple domains to eval-
uate the evidence for impairments in complex process-
ing, and they have interpreted impairments in working
memory, abstract reasoning, postural control, and other
complex functions in this manner (Minshew and others
2002; Minshew and others 2004; Koshino and others
2005).

Second, although traits may be specifically character-
ized, they may not be independently determined. From
this perspective, the core impairment is regarded not as
at the level of a set of independent traits with independ-
ent brain loci, biologies, and genes (Silverman and oth-
ers 2002) but rather as at the level of an underlying pro-
cessing or computational abnormality that has multiple
functional consequences. The argument can be made
that this is a more parsimonious approach to cognitive
neuroscience and potentially also to the genes and envi-
ronmental factors implicated in underlying etiology of
the disorder.

Third, the processing impairment is based on underly-
ing tissue abnormalities whose pathophysiology under-
lies underconnectivity. Here it is important to comment
that pervasive tissue and processing changes can easily
coexist with localized abnormalities, for instance, if a
relevant receptor is more highly expressed in certain
regions, as is the MHCI receptor in limbic system and
cerebellum (Boulanger and Shatz 2004). Moreover, as
the heterogeneity of such tissue and related metabolic
pathophysiology is better characterized, it may prove
more useful than behaviors in identifying autism clinical
and genetic subgroups.

Fourth, once the physicality of the underlying tissue
abnormalities is considered, there is no reason to pre-
sume that the pathophysiology is confined to the brain.
Although there is a great deal of heterogeneity to the

Fig. 7. “Underconnectivity” in autism. Functional connectivity
between 10 region-of-interest pairs is consistently lower in
autism than in controls but shows the same rank order (Just
and others 2004).
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medical complaints that frequently accompany autism,
there are common threads that may indicate common or
related molecular and cellular mechanisms between
body and brain. For instance, the pathophysiologies of
inflammation, oxidative stress, and excitotoxicity are
greatly linked, and it appears these types of mechanisms
are implicated in the brain as well as in some of the sen-
sory and sleep regulation, epilepsy, immune, and gas-
trointestinal complaints commonly seen in autism.

Fifth, some of the tissue pathophysiology and conse-
quent processing abnormalities now being identified in
autism are final common pathways that may eventuate
from a broad range of genetic, metabolic, toxicological,
immune, infectious, and even stress-related triggers. The
systems-perturbation-derived specificity of autistic
behaviors can thus plausibly rest on a great heterogene-
ity of origins. It is thus no wonder that it has been so dif-
ficult to find either genetic or metabolic biomarkers for
autism.

Sixth, the dynamics described above are not likely to
be confined to the syndrome of behaviors we now call
autism. Hebert and others have documented brain size
(Herbert, Ziegler, Makris, and others 2003), overall and
radiate white matter enlargement (Herbert and oth-
ers 2004; Figs. 2, 3, 4, and 9), and widespread asymme-
try shifts (Herbert and others 2005) that are highly sim-
ilar in high-functioning autism and developmental lan-
guage disorder (DLD) or specific language impairment
(SLI; Fig. 8). Neither total brain volume nor anatomical
abnormalities had been addressed in DLD/SLI in earlier
studies due to an a priori assumption that relevant abnor-

malities in a language disorder would be confined to 
language-associated areas of the brain. But theories of
pervasively slow processing have emerged in DLD/SLI
that bear a suggestive similarity to underconnectivity
theories in autism, and both theories imply an anatomi-
cal association with more widespread brain abnormali-
ties. Moreover, a growing body of literature has docu-
mented that DLD/SLI is in fact not specific but involves
more subtle impairments across the board (Hill 2001;
Webster and Shevell 2004). In addition, a connection to
immune system abnormalities has been a persistent sub-
theme in childhood language disorder research (Behan
and Geschwind 1985; Benasich 2002; Dalton and oth-
ers 2003). Finally, there appears to be both functional
and genetic overlap between these two groups
(Kjelgaard and Tager-Flusberg 2001). Intriguingly, simi-
lar lines of thought about overlap are also emerging in
relation to other disorders such as Tourette syndrome
(Becker and others 2003; Plessen and others 2004).

Seventh, both the newly appreciated chronicity of
some of the underlying pathophysiology and the perva-
siveness of the connectivity abnormalities open new
horizons for seeking potential treatment targets.
Inflammation, oxidative stress, excitotoxicity, and other
neurochemical changes and their triggers open a range
of possibilities for research into potential treatment tar-
gets. Characterizing the connectivity abnormalities
underlying behavioral manifestations may allow a sharp-
ening of behavioral therapies. More fundamentally, the
awareness that the brain as well as medical conditions of
children with autism may be conditioned by chronic bio-

Fig. 8. Poor-quality connections disrupt coordinated timing more severely in interconnected networks. Functions involving connec-
tions among a small number of nearby areas are less vulnerable to impaired connectivity than are functions that integrate information
across many areas that are widely distributed throughout the brain.
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medical abnormalities such as inflammation opens the
possibility that meaningful biomedical interventions
may be possible well past the window of maximal neu-
roplasticity in early childhood because the basis for
assuming that all deficits can be attributed to fixed early
developmental alterations in neural architecture has now
been undermined.

Conclusion

The conundrum of large brains in autism thus appears to
be giving up its mystery and instead is leading us toward
convergence upon a fruitful reformulation of both patho-
physiology and function in autism. This reformulation
points toward more coordinated interdisciplinary
research agendas and raises hopes of more integrated
understanding. It also opens prospects of prevention and
particularly of ameliorative intervention. Thus, under-
standing may reasonably soon be translated into impact,
which is the ultimate goal of the biomedical enterprise.
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